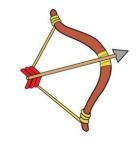
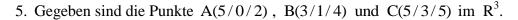
Q12 * Mathematik * Wiederholung zur analytischen Geometrie Vermischte Aufgaben

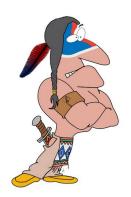
1. Berechnen Sie im Dreieck ABC die Seitenlängen und die Innenwinkel. A(2/-3/4), B(-1/1/4) und C(4/-1/3).



- 2. Gegeben sind die beiden Vektoren $\vec{a} = \begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix}$
 - a) Bestimmen Sie den Winkel zwischen den beiden Vektoren.
 - b) Bestimmen Sie je drei Vektoren die auf \vec{a} bzw. auf \vec{b} senkrecht stehen.
 - c) Bestimmen Sie einen Vektor c, der sowohl auf a als auch auf b senkrecht steht.
- 3. Das Dreieck ABC ist durch A(-1/4/3), B(5/-5/6) und C(7/0/3) gegeben.
 - a) Berechnen Sie den Fußpunkt F des Lotes von C auf die Seite [AB].
 - b) Berechnen Sie die Länge der Höhe h_c und den Flächeninhalt des Dreiecks ABC.
- 4. Gegeben sind die Punkte $\ A(1/-2/3), \ B(5/2/1)$ und $\ C_k(5+2k/-1-k/4+2k)$ mit $\ k\in R$.
 - a) Zeigen Sie, dass das Dreieck ABC_k für $k \neq -1$ gleichschenklig ist.
 - b) Für welchen Wert von k ist das Dreieck gleichseitig?
 - c) Für welchen Wert von k ist das Dreieck rechtwinklig?



- b) Bestimmen Sie den Flächeninhalt F_{AABC} des Dreiecks ABC.
- c) Bestimmen Sie einen Punkt S so, dass das Volumen der Pyramide ABCS das Volumen V = 9 besitzt.



- 6. Gegeben sind die Punkte A(1/2/-3), B(3/5/3) und C(9/7/0) im R³.
 - a) Zeigen Sie, dass sich das Dreieck ABC zu einem Quadrat ABCD ergänzen lässt. Bestimmen Sie die Koordinaten von D und den Flächeninhalt dieses Quadrats.
 - b) Zeigen Sie dass sich das Quadrat ABCD zu einem Würfel ABCDEFGH erweitern lässt. Bestimmen Sie die Koordinaten der Eckpunkte E, F, G und H und das Volumen dieses Würfels.
- 7. Gegeben sind die Punkte A(-3/-2/4), B(5/4/0) und P(2/5/10) im R³.
 - a) Zeigen Sie, dass die drei Punkte A, B und P nicht auf einer Geraden liegen.
 - b) Bestimmen Sie den Abstand des Punktes P von der Geraden AB.

Q12 * Mathematik * Wiederholung zur analytischen Geometrie * Lösungen

1.
$$\overrightarrow{AB} = \begin{pmatrix} -3 \\ 4 \\ 0 \end{pmatrix}$$
; $\overrightarrow{AC} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$; $\overrightarrow{BC} = \begin{pmatrix} 5 \\ -2 \\ -1 \end{pmatrix}$ und damit
$$\overrightarrow{AB} = \sqrt{3^2 + 4^2 + 0^2} = 5 \text{ ; } \overrightarrow{AC} = \sqrt{2^2 + 2^2 + 1^2} = 3 \text{ ; } \overrightarrow{BC} = \sqrt{5^2 + 2^2 + 1^2} = \sqrt{30}$$

$$\cos \alpha = \frac{\overrightarrow{AB} \circ \overrightarrow{AC}}{\overrightarrow{AB} \cdot \overrightarrow{AC}} = \frac{-6 + 8 + 0}{5 \cdot 3} = \frac{2}{15} \implies \alpha \approx 82,3^{\circ} \text{ ;}$$

$$\cos \beta = \frac{\overrightarrow{BA} \circ \overrightarrow{BC}}{\overrightarrow{BA} \cdot \overrightarrow{BC}} = \frac{15 + 8 - 0}{5 \cdot \sqrt{30}} = \frac{23}{5 \cdot \sqrt{30}} \implies \beta \approx 32,9^{\circ} \text{ ; } \gamma \approx 180^{\circ} - 32,9^{\circ} - 82,3^{\circ} = 64,8^{\circ}$$

2. a)
$$\cos \varphi = \frac{-12 - 4 + 3}{\sqrt{36 + 4 + 9} \cdot \sqrt{4 + 4 + 1}} = \frac{-13}{7 \cdot 3} \implies \varphi \approx 128, 2^{\circ}$$

b) $\vec{a} = \begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix}$: z.B. $\begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} \perp \vec{a}$; $\begin{pmatrix} 3 \\ 0 \\ -6 \end{pmatrix} \perp \vec{a}$; $\begin{pmatrix} 3 \\ 3 \\ -4 \end{pmatrix} \perp \vec{a}$ und z.B. $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} \perp \vec{b} = \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix}$

c) Für \vec{c} muss gelten $\vec{a} \circ \vec{c} = 0$ und $\vec{b} \circ \vec{c} = 0 \implies$

(1) $6c_1 - 2c_2 + 3c_3 = 0$ und (2) $-2c_1 + 2c_2 + c_3 = 0$

Eleminiere z.B. c_2 durch (1) + (2) $\implies 4c_1 + 4c_3 = 0$ und wähle nun frei $c_1 = 1 \implies c_3 = -1$

und in (2) eingesetzt folgt
$$-2+2c_2-1=0 \Rightarrow c_2=1,5$$
 also $\vec{c} = \begin{pmatrix} 1\\1,5\\-1 \end{pmatrix}$ bzw. $\vec{d} = \begin{pmatrix} 2\\3\\-2 \end{pmatrix}$

3. Das Dreieck ABC ist durch A(-1/4/3), B(5/-5/6) und C(7/0/3) gegeben.

a)
$$\overrightarrow{AB} = \begin{pmatrix} 6 \\ -9 \\ 3 \end{pmatrix}$$
 und $\overrightarrow{AC} = \begin{pmatrix} 8 \\ -4 \\ 0 \end{pmatrix}$; $\overrightarrow{AF} = \frac{\overrightarrow{AC} \circ \overrightarrow{AB}}{\left| \overrightarrow{AB} \right|^2} \cdot \overrightarrow{AB} = \frac{48 + 36 + 0}{(3 \cdot \sqrt{4 + 9 + 1})^2} \cdot \begin{pmatrix} 6 \\ -9 \\ 3 \end{pmatrix} = \frac{84}{9 \cdot 14} \cdot \begin{pmatrix} 6 \\ -9 \\ 3 \end{pmatrix} = \frac{2}{3} \cdot \begin{pmatrix} 6 \\ -9 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix} \implies \overrightarrow{F} = \overrightarrow{A} + \overrightarrow{AF} = \begin{pmatrix} -1 + 4 \\ 4 - 6 \\ 3 + 2 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix} \text{ also } F(3/-2/5)$

b)
$$h_c = |\overrightarrow{CF}| = \sqrt{(3-7)^2 + (-2-0)^2 + (5-3)^2} = \sqrt{16+4+4} = 2 \cdot \sqrt{6}$$

 $A_{\Delta ABC} = \frac{1}{2} \cdot \overrightarrow{AB} \cdot h_c = \frac{1}{2} \cdot 3 \cdot \sqrt{4+9+1} \cdot 2 \cdot \sqrt{6} = 3 \cdot \sqrt{14} \cdot \sqrt{6} = 6 \cdot \sqrt{21}$

4. a)
$$\overrightarrow{AB} = \begin{pmatrix} 4 \\ 4 \\ -2 \end{pmatrix}$$
; $\overrightarrow{AC_k} = \begin{pmatrix} 4+2k \\ 1-k \\ 1+2k \end{pmatrix}$; $\overrightarrow{BC_k} = \begin{pmatrix} 2k \\ -3-k \\ 3+2k \end{pmatrix}$; $\overrightarrow{AC_k} = \sqrt{16+16k+4k^2+1-2k+k^2+1+4k+4k^2} = \sqrt{18+18k+9k^2}$

$$\overline{BC_k} = \sqrt{4k^2 + 9 + 6k + k^2 + 9 + 12k + 4k^2} = \sqrt{18 + 18k + 9k^2} \quad also \quad \overline{AC_k} = \overline{BC_k}$$
 (Für $k = -1$ gilt $C_1(3/0/2)$ und C_1 ist der Mittelpunkt der Strecke [AB].)

b) Das Dreieck ABC ist gleichseitig, falls gilt

$$\overline{AC_k} = \overline{AB} \iff \sqrt{16 + 16 + 4} = \sqrt{18 + 18k + 9k^2} \iff 36 = 18 + 18k + 9k^2 \iff 0 = -18 + 18k + 9k^2 \iff k^2 + 2k - 2 = 0 \iff k_{1/2} = \frac{1}{2} \cdot (-2 \pm \sqrt{4 + 4 \cdot 2}) = -1 \pm \sqrt{3}$$

c) Das Dreieck ABC ist rechtwinklig, falls gilt $\overrightarrow{AC_k} \circ \overrightarrow{BC_k} = 0 \iff$

$$\begin{pmatrix} 4+2k \\ 1-k \\ 1+2k \end{pmatrix} \circ \begin{pmatrix} 2k \\ -3-k \\ 3+2k \end{pmatrix} = 0 \iff 8k+4k^2-3+2k+k^2+3+8k+4k^2=0 \iff$$

$$9k^2 + 18k = 0 \iff 9k \cdot (k+2) = 0 \iff k_3 = 0 ; k_4 = -2$$

5. a)
$$\overrightarrow{AB} = \begin{pmatrix} -2\\1\\2 \end{pmatrix}$$
; $\overrightarrow{BC} = \begin{pmatrix} 2\\2\\1 \end{pmatrix}$; $\overrightarrow{AC} = \begin{pmatrix} 0\\3\\3 \end{pmatrix} \Rightarrow |\overrightarrow{AB}| = |\overrightarrow{BC}| = \sqrt{4+1+4} = 3$ und

$$\overrightarrow{AB} \circ \overrightarrow{BC} = -4 + 2 + 2 = 0$$
 d.h. $\angle CBA = 90^{\circ}$ und $\overrightarrow{AB} = \overrightarrow{BC}$

b)
$$F_{\Delta ABC} = \frac{1}{2} \cdot \overline{AB} \cdot \overline{BC} = \frac{1}{2} \cdot 3 \cdot 3 = 4,5$$

c)
$$9 = V_{\text{pyramide}} = \frac{1}{3} \cdot F_{\Delta ABC} \cdot h \implies h = \frac{9 \cdot 3}{F_{\Delta ABC}} = \frac{27}{4.5} = 6$$

Suche ein
$$\vec{n} \perp \overrightarrow{AB}$$
 und $\vec{n} \perp \overrightarrow{BC}$; $\overrightarrow{AB} \times \overrightarrow{BC} = \begin{pmatrix} -3 \\ 6 \\ -6 \end{pmatrix} = -3 \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$, wähle $\vec{n} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$

wegen $|\vec{n}| = \sqrt{1+4+4} = 3 = \frac{1}{2} \cdot h$ lautet ein geeignetes S z.B.

$$\vec{S} = \vec{A} + 2 \cdot \vec{n} = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 7 \\ -4 \\ 6 \end{pmatrix} \text{ also } S(7/-4/6).$$

6. a)
$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix}$$
; $\overrightarrow{BC} = \begin{pmatrix} 6 \\ 2 \\ -3 \end{pmatrix}$; $\overrightarrow{AC} = \begin{pmatrix} 8 \\ 5 \\ 3 \end{pmatrix} \Rightarrow |\overrightarrow{AB}| = |\overrightarrow{BC}| = \sqrt{4+9+36} = 7$ und

 $\overrightarrow{AB} \circ \overrightarrow{BC} = 12 + 6 - 18 = 0$ d.h. $\angle CBA = 90^{\circ}$ und $\overrightarrow{AB} = \overrightarrow{BC}$

$$\overrightarrow{D} = \overrightarrow{A} + \overrightarrow{BC} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + \begin{pmatrix} 6 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ -6 \end{pmatrix} \text{ also } D(7/4/-6) \text{ und } F_{\triangle ABCD} = \overrightarrow{AB} \cdot \overrightarrow{BC} = 7 \cdot 7 = 49$$

- b) Suche ein $\vec{n} \perp \overrightarrow{AB}$ und $\vec{n} \perp \overrightarrow{BC}$; \overrightarrow{AB} x $\overrightarrow{BC} = \begin{pmatrix} -21 \\ 42 \\ -14 \end{pmatrix} = -7 \cdot \begin{pmatrix} 3 \\ -6 \\ 2 \end{pmatrix}$, wähle $\vec{n} = \begin{pmatrix} 3 \\ -6 \\ 2 \end{pmatrix}$, wegen $|\vec{n}| = \sqrt{9 + 36 + 4} = 7$ damit gilt $\vec{E} = \vec{A} + \vec{n}$, $\vec{F} = \vec{B} + \vec{n}$, $\vec{G} = \vec{C} + \vec{n}$, $\vec{H} = \vec{D} + \vec{n}$ also E(4/-4/-1), F(6/-1/5), G(12/1/2) und H(10/-2/-4).
- 7. a) $\overrightarrow{AB} = \begin{pmatrix} 8 \\ 6 \\ -4 \end{pmatrix}$, $\overrightarrow{AP} = \begin{pmatrix} 5 \\ 7 \\ 6 \end{pmatrix}$ und ersichtlich $\overrightarrow{AP} \neq r \cdot \overrightarrow{AB}$,

also liegen A, B und P nicht auf einer Geraden.

b) Die Projektion $\vec{p} = \overrightarrow{AF}$ von \overrightarrow{AP} auf \overrightarrow{AB} liefert den Fußpunkt F des Lotes von P auf AB. Es gilt:

$$\overrightarrow{AF} = \frac{\overrightarrow{AP} \circ \overrightarrow{AB}}{\overrightarrow{AB} \circ \overrightarrow{AB}} \cdot \overrightarrow{AB} = \frac{40 + 42 - 24}{64 + 36 + 16} \cdot \overrightarrow{AB} = \frac{58}{116} \cdot \overrightarrow{AB} = \frac{1}{2} \cdot \begin{pmatrix} 8 \\ 6 \\ -4 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix} \text{ und } \overrightarrow{AF} = \overrightarrow{F} - \overrightarrow{A} \implies 0$$

 $\vec{F} = \overrightarrow{AF} + \overrightarrow{A} \implies F(1/1/2)$ und der gesuchte Abstand beträgt $d = \overline{FP} = \sqrt{1^2 + 4^2 + 8^2} = 9$

