Q11 * Mathematik * Aufgaben zur natürlichen Logarithmusfunktion

1. Bestimmen Sie für die folgenden Funktionen jeweils den Definitionsbereich D_f , den Term f'(x) der Ableitungsfunktion und alle Hoch- bzw. Tiefpunkte des Graphen von f.

a)
$$f(x) = \ln \sqrt{x^2 + 1}$$

b)
$$f(x) = \ln\left(\frac{2}{x} + \frac{x}{2}\right)$$

c)
$$f(x) = \ln \frac{3x}{x^2 + 4}$$

d)
$$f(x) = \ln \frac{x+1}{\sqrt{x^2+1}}$$

2. Wie allgemein bekannt gelten für Logarithmen die folgenden Gesetzmäßigkeiten:

$$\log_b x + \log_b y = \log_b (x \cdot y) \hspace{3mm} ; \hspace{3mm} \log_b x - \log_b y = \log_b (\frac{x}{y}) \hspace{3mm} ; \hspace{3mm} \log_b (x^n) = n \cdot \log_b x$$

Peter behauptet daher, dass die Funktionen f und g völlig identisch sind. Nehmen Sie zu Peters Behauptung Stellung.

a)
$$f(x) = \ln(x^2)$$
 und $g(x) = 2 \cdot \ln(x)$

b)
$$f(x) = \ln(x) + \ln(x+1)$$
 und $g(x) = \ln(x \cdot (x+1))$

Und nun noch eine anspruchsvolle Aufgabe für Mathe-Experten:

- 3. Gegeben ist die Funktion f mit $f(x) = 10 \cdot \ln \left(\frac{2x}{\sqrt{3x^2 + 4}} \right)$.
 - a) Bestimmen Sie den Definitionsbereich und alle Nullstellen von f.
 - b) Zeigen Sie, dass f eine streng monoton wachsende Funktion und damit umkehrbar ist.
 - c) Bestimmen Sie den Term $f^{-1}(x)$ der Umkehrfunktion von f .

Q11 * Mathematik * Aufgaben zur natürlichen Logarithmusfunktion

Lösungen

1. a)
$$f(x) = \ln \sqrt{x^2 + 1}$$
; $D_f = R$; $f'(x) = \frac{x}{x^2 + 1}$ und $TIP(0/0)$

b)
$$f(x) = \ln\left(\frac{2}{x} + \frac{x}{2}\right) = \ln\frac{4+x^2}{2x}$$
; $D_f = R^+$; $f'(x) = \frac{x^2-4}{x\cdot(4+x^2)}$; $TIP(2/\ln 2)$

c)
$$f(x) = \ln \frac{3x}{x^2 + 4}$$
; $D_f = R^+$; $f'(x) = \frac{4 - x^2}{x \cdot (4 + x^2)}$; $HOP(2/\ln \frac{3}{4})$

d)
$$f(x) = \ln \frac{x+1}{\sqrt{x^2+1}}$$
; $D_f =]-1$; $\infty[$; $f'(x) = \frac{1-x}{(1+x)\cdot(x^2+1)}$; $HOP(1/\ln \sqrt{2})$

- 2. a) $D_f = R \setminus \{0\}$ und $D_g = R^+$ und f(x) = g(x) für alle $x \in D_g$ (G_f ist symmetrisch zur y-Achse.)
 - b) $D_{_f} = R^{_+}$ und $D_{_g} = \,] \infty \; ; \, -1[\; \cup \;]0 \; ; \, \infty[\; \mbox{ und } \; f(x) = g(x) \; \mbox{ für alle } x \in D_{_f}$
- 3. a) $D_f = R^+$ und NSt.: $f(x) = 0 \Leftrightarrow x_1 = 2$
 - b) $f'(x) = \frac{40}{x \cdot (3x^2 + 4)} > 0$ für alle $x \in D_f = R^+$ $f^{-1}(x)$
 - c) $f^{-1}(x) = \sqrt{\frac{4e^{0.2x}}{4 3e^{0.2x}}}$



